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ABSTRACT
A convergence theorem for Newton-like methods in Banach spaces is given,
which improves results of Rheinboldt ({25], Dennis {2], Miel {13, 14]'and Moret
{16] and includes as a special case an updated version of tye Kantorovich
theorem for the Newton m&thod given in previous papers‘{33-351. Error bounds
obtained ;n'i32] are also improved. This paper unifies the study of finding

sharp error bounds for Newton-like methods under Kantorovich type assumptions.
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SIGNIFICANCE AND EXPLANATION

To find sharp error bounds for iterative solution of nonlinear equations
in Banach spaces is of basic importance in numerical analysis. This paper

gives a convergence theorem for a class of Newton-like methods in Banach

spaces, which improves the theorems of Kantorovich (7, 8], Rheinboldt (25],
Dennis [2], Miel {13, 14]) and Moret [16). The argument employed in this paper
certainly simplifies and unifies the study for finding sharp error bounds for

Newton-like methods in Banach spaces.
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A CONVERGENCE THEOREM FOR NEWTON~LIXEZ METHODS IN BANACH SPACES .~}~j§
- Tetsuro Ymmoto'

1. Introduction !‘1‘%'

Let X and Y be Banach spaces and consider an operator F : DC X + Y which is et

T

Fréchet differentiable in an open convex set Dy C D. Many iterative methods for solving :& -~

the equation

F{x) = 0 (1.1)

can be written in the form

Xpsy = X = Mx) Fx) , n20 , (1.2)
where x, € Dj is given and A(x) denotes a linear operator which approximates the
Fréchet derivative F'(x) of F. Under some assumptions, Rheinboldt [25] established a
convergencs theorem for {1.2) which includes the Kantorovich theorem for the Newton method
(Alx,) = F'(x,}) as a special case. A further generalization was given by Dennis {2, 3].
Miel [13, 14) improved the error bounds for Rheinboldt {[25]. Moret [16] obtained a
convergence theorem as well as error bounds for the iteration (1 2) under the stronger
conditions than those of Rheinboldt. By numerjical examples, he showed that his bounds are
sharper than thoae of Miel. However, no proof is given. Recently, in {32), we presented a
method for finding sharp error bounds for (1.2) under Dennis' assumptions and ahowed that
the bounds obtained improve those of Rheinboldt, Dennis and Miel and reduce to Moret's
bounds if we replace the assumptions by his stronger ones. It was also shown that Moret's
results can be derived from Rheinboldt's.

In this paper, we first state an updated version of the Xantorovich theorem for the
Newton ethod in §2. Next, in §3, we give a simple but powerful principle for finding

error bounds for (1.2) under Kantorovich type assumptions. Finally, as an application of

this prinriple, a convergence theorem for (1.2) is given in §4, which includes the updated

'Department of Mathematics, Faculty of Science, Ehime University, Matsuyama 790, Japan.

Sponsored by the United States Army under Contract No. DAAG29-B0~C-0041 and by the Ministry
of Fducation, Japan.
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version of the Kantorovich theorem and improves the results of Rheinboldt, Dennis, Miel and

Moret. Our approach certainly simplifies and unifies the study for finding sharp error

bounds for the Newton-like methods. (Also see Yamamoto [32-35).)

2. An Updated Version of the Kanotorovich Theorem
Let F, Dy and x; be defined as in §1 and F(x,) # 0 without loss of generality.

Furthermore, assume that l"'(xo)’1 exists and the following conditions are satisfied:

1F () THE ) = Py ¢ Ryl X,y €D, K> O,
- -
n = 1F'(x,) 1F(xo)l, h = kn 5-2‘-, t" - —20 .
1+ /1=2h

— — L ] *
S=S(x,t-m={xex| lex 1 gt-n}Cp .
Under these assumptions, define the scaler sequence {tn} by

tg =0, to g =t = £(e)/E' (), n 20 ,

1
with f(t) = > kt? - £ 4+ n, and the sequences {s;}, {n,} ana {(n} by

B, =1, n,. =7n, h, = h=KXn ,

0 4] 0

1 2
- - - . [
Bn = Bn—1/(1 hn-1)' nn 2 xBnnn—1' hn = Knn nn, n > 1

Then, in [34, 35], we obtained the following result, which is an updated version of the
Kantorovich theorem and essentially equivalent to [33, Theorem 3.1] with the optimal
parameter 9.

Theorem 2.1. With the above notation and assumptions, we have the following:

(i) The Newton method x = x, - F'(xn)'1F(xn) is well defined for every n 2 0,

n+1

- .« -
x, € Slinterior of S) for n > 1 and {xn} converges to a solution x € S of the

equation (1.1).

*
(ii) The soiution x is unique in

L
S(xo.t )y N D0 (2h < 1)

S =

-— £ 2 3
Stxg,t ) ND, (20 =1

——— — L 1]
where t'% = (1 + Y1-2n)/K and s(xo,t") denotes the interior of S(xo,t ).

-2
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(111) Let 8

- - - *
0 -8, sn - S(xn,t ‘tn)(n;1)p

l?'(xn)-1(F'(x) - P y)))

X = sup —~ (nZO) .
x.ytsn Ix = yl
xby
lr'(xn)"(r‘(x) - F'(yN)
L = sup_ — (n20) .
x,y€8 fx yi
xvty

Then, for n 2 0, we have &, .4 - t, = n, and the following error estimates hold:

24
L
Ix - 20 ¢ n

- B
1+ /1-2x A
nn

24

<

" e

24
< - (Moret [16]) (2.2)

1+ Ye2x(1-xa )" Ta
n n

(2.1)

{Kantorovich [7])

(D8ring [5])

- a (Miel [14, 15))
T

£t =t (Kantorovich ([8])

(Xantorovich {71)
1+ /1-2hh

1 2"-1
£ 7 (2h) n (kantorovich {7}) ,

2

vwhere 4 = ix - xnl, An - Ixn - x 1 and ¥ denotes the backward difference operator.

n+1 0




The well known bounds obtained by Dennis [1], Rall-Tapia [24], Tapia [28), Ostrowski
(18, 19), Gragg-Tapia (6] and Potra~Ptfk [22] fall into the above chart (cf. Yamamoto
[31 - 35] and Potra [21])). Purthermore, it was shown in [33 - 35] that (2.1) improves the
bounds of Lancaster [11], Kornstaedt [10) and Potra (21]. It is also easy to see that the -
bound of Potra [20]) follows from (2.2). Therefore, Theorem 2.1 gives a unified derivation

of the known error bounds for the Newton method under the Kantorovich assumptions.

3. A Principle for Finding Brror Bounds for (1.2)
Before extending Theorem 2.1 to the iteration (1.2) we prove the following result.
Theorem 3.1. Let the equation (1.1) have a solution x  and congider the iteration

(1.2). Let x and x be defined for some n 2 0, and a., bn and Cn be

n 1
nonnegative numbers such that a, > 0, bn £ 1 and
L 1 * 2 -
Ix - x I <—alx =x§ +blIx -x0 +c .
n+t = 2 n n n n

n
Furthermore, put d, = Ix - xnl. If the polynomial

n+1

- — - (1= + +
plt) 2 ant (1 bn)t <, dn -
—- -— — —_— - Y
with a >a, 1>b >b and ¢ > c. has two positive zerces 0 , © such that -
n= n = n= n n= n n n ] 3
-— . -— : .
o, £9. then the polynomial p(t) = % antz - (1-b )t + ¢, + 4  also has two positive YT,
» e 1 — — *h D
zeroes ¢ , © such that o < O <0 <0 . If it is known for any reasons that
n’ 'n n= n = n = n

- L ]

* -— -
Ix - x1 <0 , then we have an improved error estimate Ix =- x 1 < 0 .
n = n n ® n

Proof. The first assertion of the theorem easily follows from the fact that

— *
p(t) 2> p(t) for t > 0. To prove the second assertion, we observe that p(lx - xn') 20

since
. * 1 . 2 -
Ix = x1 -3 < WIx =-x I <—alx =x1°“+blIx =x 0 +¢c .
n n = nt1 = 2 'n n n n n
Therefore we have
* L L 4 .k
Ix -x01 <o or Ix - x1>0 .
n = n n = n
» -
However, if it is known for any reasons that fIx = xnl < Un , then the latter case can be
excluded: 1In fact, we have ol s
* —_— - ') i 3 - —- p
c a <o <o + + c + +
n < n = n n an bn n > 8, bﬂ €n

and
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* - (1) — — - b
s - un it a, + bn + cn =a, +b,+c, .

. Q.E.D.
The usual convergence proof for (1.2) is done with the use of a majorant sequence
L]
{t,} due to Rheinbolat [25] such that 1 41 = Xl S tpaq =ty and € b et

-
as n * =, Therefore, by taking t' - t, for on in Theorem 3.1, we can apply the
theorem to obtain sharper error bounds. The detailed argument will be given in the next

gection.

4. A Convergence Theorem for (1.2)

Let F, Dy and x, be defined as in §1 and consider the Newton-like method (1.2).
According to Dennis [2] and Schmidt [26), we assume the following:

tAlx) (R (x) - Py ¢ Kixeyl, x,y €D, K> 0,

v
o
-

~1
PAGx)) T (ALX) = A(x))1 & Lix=xo§ 4 &, x €Dy, L2 0, ¢

lA(xo)"(r'(x) = Ax)I ¢ Mix-x )} +m x €D, M20, m20 ,

C WEERlE s T T NN . L e 4 v s ee—— e -

\J t+mc1, 6= max(1, &igﬁ, !(xo) $0 ,
-1 2
n = lA(xo) ?(xo)l, h =oKkn/(1 - £ - m) s 172 ,

t. = (1 -2 =-m)(1 « /1=2n)/(0K) ,

~n

e (1-mn+f0m? - 200k,

— — -
S =S(x,, t =" CDy .

Under these assumptions, define the sequence {t,} by

A

tg = 0, toaq = by + £(E)/9(E ), B30,

with f(t) = % cl(tz - (1~2-m)t +n and g(t) = 1 - L - Lt, and the sequences {pn),

{q ), {8}, {n)} ana {(n} by

5=

- P & & ST

-t S . LA ST e L P

N T S e e T
e A LRI y B
POL PR PV PO W AT A AR AT
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n -
n

Furthermore, put

and

Then we can prove

Theorem 4.1.

e r,

(i) The iteration

P P
LN
P

n>1 and {x.}

{ii) The solution

0

Then we have

and

2
Py 1 -8, q, 1-2-m, Bo = po/qo, =" ho = UKBono '

ni1 nE1 2
p.=1-2L-1 n,q =1=-L~-m-=0K n,B =p/q ’
n =0 3j n =0 3j n n" n
{+ oxn? + (p -aq__,n__}Y/ h =o0okBn,n31
2 n-1 n-1 n=1""n-17/Pp* By nn’ = *

- - = - .
(iii) Let s, =S, Sn = S(xn,t - tn)(n 2 1 ,

o(t) = 1 - 2 -m = (L)L, & = Ix = xg!

94 = 'xn+1 - xnl *

the following result, which is a natural generalization of Theorem 2.1.
With the above notation and assumptions, we have the following:

(1.2) is well defined for every n > 0, x, € S{interior of 8) for
converges to a solution x' ¢ 8 of the equation (1.1).

x' is unique in

~hh 2
S(xyet ) NDy (L€ 2Kn < (1-m))
s (4.1)

-— ~k & 2
S(xy,t )hb0 (if 2Kn = (1-m)”) . '

ln(xn)’1(v'(x) - FUYIN

K = sup (n20) .,
n x,yég Ix = yl
xfty . -1
A(xn) (F'(x) = F'(y))])
L = sup_ ix =yl (n 2 0) .
X,Y€S
ity
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29(4_)d
lx' -x1<a 2 n_n (n > 0)
| R AT L P I A
’ n M n ng n n
2g(4_)
¢<B 3 n) (n>0)
T T a) + feta? - 21 gta )4 )
M n ’ n nq n n
2g(A )a
$7, ¢ — (n30) (4.2)

2
v ) + Jota )? - 2xa( )8,
(Moret [16), Yamamoto (32])

Clax an aan g o

2q(tn)dn

[ 7.8
o
"

(n20) (4.3)

n
2
O(tn) + /;(tn) - 2Kq(tn)dn

(Yamamoto (32])
2(Pn/qn)dn

«—2L 22— (n0) (4.4)
1+ /1< 2%B 3
nn

2(p_/q 14
< . s SN 2 0) (4.5)
1+ /7= 2008 &
2(p /q )4
< i e 1 S 20 (4.6)
1+ /7= n
£’ -
n
- d (n30) (4.7)
th*1 n
e -t
n
s T dn_1 (n ?- 1) (Miel [15]) (4.8)
2(p /qn)n
1 n n
- ( a., 2 M {4.9)

n~1 1+ 1-2hn

gt -t (n20) (Rheinboldt [25), Dennis [2]) (4.10)
2(p /q_In

Bt . 1 (n30 . (4.11)
1+ 41-2hn

(iv) Estimates
3
1 1 2 n+2
%41 £ W (E Kdn + (mﬂlhn)dn} s Vt-:;:; dn s dn

7=




hold, where the last inequality may be replaced by the strict inequality < if 4, ¥ 0.
Proof. (i) An application of the majorant theory due to Rheinboldt [25) leads to the
estimate

] x 1 <t -t ,n>0 ,

xn«H T *a" 3 Tnet n =
from which (i) follows by the standard argument and we obtain (4.10), since {tn)
monotonically converges to t'.
(1i) We have
F'(xg) = Alxg) (I + Alxg) ™ "(F' (x) - Axg))}”!
and
-1, N
lA(xo) (P (xo) A(xo))l gm<
by assumption so that
1P (x )" TF(X )1 < 1Pt ()" AGe Mo IACx ) T TR(x )b ¢
0 0 - 0 0 0 0 = 1-m '

1

lr'(xo)"(r'(x) -~ Py ¢ lr-(xo)' A(xo)l-ln(xo)"(v'(x) - F'(y))t

X
: ﬁ‘- Ix-y} , x,y € DO .
and

20K <1 .
2 =
(1 -2 -m)

2(5)GE) ¢

~W ~
Furthermore, let t Dbe the least solution of the equation f(t) = % Ktz = (1-m)t + n = 0,

Then we have

n ~l L]
nE—<t <t
= {-m -
since
r Ty - KLn,2
f(t) 2 £(t) (t>0), f(1-m) 2(1-m) >0
and
n ~r ~
= <t (the largest solution of f£(t) = 0) ,
P ~ n
Therefore we have t =~ N> ¢ = —— and
= 1-m

Six,, & -y CSix,,t -m<cD
(x1, t o) © x1, n) < 0o °

Consequently, the assumptions of Theorem 2.1 are satisfied by replacing X, n and t' in

At al T T T T T et e At e T Tt Lt
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the theorem by K/(1-m), h/(1-m) and t , respectively. Hence we obtain from Theorem 2.1

(11) that the solution is unique in the region § defined in (4.1).

- — —
(i11) It is easy to see that x ¢ Sn < sn_1. To obtain the bounds a, Bn' Y, and Gn,
let
u = 2 -1
n(t) 2 Kt + g(8)) (m + MA DL,
vit) =frn 2+ ga) Vim + Ma )
n 2 In it n
- 1
vobt) = 987 G ke + (m 4 Ma I},
- 1
vplt) = gte”? 5 kt? + (m+ M)
z (t) = gt )" (2 oxe? + {m + (oX-L)t_}t) + Wt -
n EALS 2 n n+1 4 -
Then, as 1s easily seen, we have
* ) Ix 1 * i
Ix - X1 g un( x = ox ) & vn(lx - xnl) < wn( x = xnl)
Ix t i '
s yn( X - x, ) £ zn( x = x ) .
Furthermore, observe that t' -t is the least sclution of the equation
2(t) = zn(t) -t + dn = 0. In fact, we have
(1-2-m-oke )% - 20kglt_) Ve
n n n+1
= (1-2%-m-oke )2 - 20kE(¢_)
n n
2
= (1 - % - m) -201(“;0 '
so that 2z{t) = 0 has two positive solutions and
(t_) * ! v 2 1 L *
- - - - - - - - -
glt z2(t tn) 2 ox{t tn) ( m cxtn)(t tn) + f(tn)
=0 . . (4.12)

This implies z(t'-tn) = 0. Similarly we have z(t“ - t,) =0, where "' is the
largest solution of f(t) = 0. Since we have already known by (i) that

» *
Ix - xnl £t - t ¢ we can apply Theorem 3.1 to obtain




W
Al »,
i >
-, e
{ * t .
- Ix =-x 1 ¢ a < Bn SV, & Gn <t - tn ’ ot
where a , B, v, and 8, dencte the largest solutions of the equations .
o]
3 U (E) =u () =t +d =0 ,
) Vi) =v(t)-t+a =0 ,
B!
w(e) = wn(t) ~t+d =0
LN
-
.
-
LY and
R
™ Yp(t) =y (t) —t+q, =0 ,
'f respectively. Next, by induction on n, we shall prove that thet = th = Npe There is
{ nothing to prove for n =0. If n > 1 and g = 5 N is true for every k £ n-1,
o then we have
X

- -1
theq = By = F(E)) Cf(r))

-1
gle ) HlE(e ) = £le ) = £7(e Ve )+ {£0(e ) + glt _))}Ve ]

} -1a 2 -
. gle ) [ ok(Ve )" + {m + (oK L)tn_1)7tn]

n-~t

(T T
g n — OKn
gm0 37 2

2 , + {m+ (ox-1) jzo ny }nn_i]

n=-

i)

-1.1 2
LR LRILRL RL S LY
s‘nn ’
-
. -1
where we understand that f nj = 0. Furthermore, we have

j=0
&
- _ 2
» h, = oK(p, /qpin,
: = ok(d okt 12 4 {m + (oR-Lie__IPE 1/(1 - L -m - oxe )2
% 2 n n-1 n n

1 2 2
oKl ok(Ve )® + {m + (ok-1)t _ }V& }J/(1 - L ~m - oKt )

2
OK[£(t ) = £(t _ ) - £'(r Ve + {£'(c )+ gle IV 1/(1 - L -m- oKt )

-10=
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- - - - z
dl!(tn)/(i L-n cltn)

--'-((cx: )2-20!(1-l-n)t +2oxn)/(1-t-u-m)2
2 n n n

sitt-t-m-an?e2omn- (1 -t -tan- aten)z

A
wj-

and, by (4.12) and z(t"* - ¢ ) = 0,

2
{eflen-=~ ax:n - /11-l-l dl:n) - 2a!f(tn)
n oK

qn - /;Er- zqu(t )Vt

q, = /¢ - 20% n
-2 t——22

z(pn/q“)nn
1+ /1-2!’!n

This leads to the estimates

2(p /q )4
§ = nqn-ﬂL (l\zo)

n J——————
1+ 1-2K(pn/q:)dn

2(p /q )4
s . s WP
1+ /1-2x8 4

nn

4

‘}
P

o o g

13

2(p,/a,)4
(B 0
1+ 71 ~ 20KB 4

nn

2(p /q )4
=288 (0
1+ /1-2hn

2(p /qn)n d

i- {n 2 0)
14+ /1-2h n

. -
-(t't)—"'“—(n>0)
n th+1 "

1=

A
- .-. .-,-.', -.._.'..\ T N S L T o ar e e L. AT
e . PR -

.
Sb AW NIRRT SRR
o BTN -
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»
(¢ = tn) .

2(pn/qn)nn
14+ /1-2hn

MO TASARLE ) LS

ks
.

)

2(pn/qn)nn
<—————

< (n>0)
1+ /1-211n

*
t -t (n20)

$ 2(py/q,)ny, (n 2 0)

QHoxn)_ +2tp g - g P a2 0,

where we have used Miel's result [14] dn/th+1 < dn_1/th (n2 1).
(iv) The statement (iv) is proved in [32}.
Q.E.D,

It is clear that Theorem 4.1 generalizes Theorem 2.1, although the latter was used in
the proof of the former. As another result obtained from Theorem 4.1, we have the
following corollary, too.

Corollary 4.1.1. Consider the modified Newton method
=x, - F'(x) 'R(x)) , n30 ,

Xn+1

where we assume the following:

1

x5 € Dy, F'(xo)— exists ,

IF'(xo)'1(F'(x) - Py & Kix-yl, x,y €Dy ,

-1 1
n= IF'(xo) F(xo)l >0, h =Xn $3 ¢

£ = (1 - Tm/K, £ = (1 ¢ SR,

- — L
S = S(x1, t =-n) E D

o *
Then:

(i) The iteration (4.13) is well defined fo every n > 0, x ¢S for n 2> 1 and (xn)

n

converges to a solution of (1.1).
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(ii) The solution is unique in

(2n ¢ 1)

e
S(xo. t ) ﬁDo

~
S =

- .
S(x,, t y N Do (2nh = 1) .

(111) Define the sequence {t;} by

1 2
co-o, en+1-;x:n+n, nzo .

9 - - - - -
Put s0 =g, sn- s(xn, t - :n) (n2 M),
|r-(xo)"(r'(x) - Py
K_= sup i (n>0) .
= x - yl -
x,ycsn
xsby
Then we have
. 24
n
Ix -x § ¢ o (n > 0)
n - 2 =
1-KA +/(T-u) - 2K 4
n n nn
Zdn
< - {(n > 0)
- 2 -
1=-KA +v/(1~KA) - 2K 4
n n 0'n
24
< n
= / 2
’ 1-KA + Y(1-xA )° - 2xa
n n n
2dn
< (n 2 [+ 3]
1-xe_+ /(1-xe )? - 2xa
- n n n
t -t
$He—(n 20
n+1
*
t -t
n
Ve dpy P2V
n
»
¢t -t (n20)
2(1-xt_) " 'oe
n Al (nz 0) .

-
1+ Y1-2k(1-ke ) "2
n n+l

Finally we remark that the approach employed in this paper is also applicable to other

types of iterations.
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